Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
IEEE Sens J ; 22(18): 18093-18103, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2123171

RESUMEN

The current COVID-19 pandemic highlights the critical importance of ubiquitous respiratory health monitoring. The two fundamental elements of monitoring respiration are respiration rate (the frequency of breathing) and tidal volume (TV, the volume of air breathed by the lungs in each breath). Wearable sensing systems have been demonstrated to provide accurate measurement of respiration rate, but TV remains challenging to measure accurately with wearable and unobtrusive technology. In this work, we leveraged electrocardiogram (ECG) and seismocardiogram (SCG) measurements obtained with a custom wearable sensing patch to derive an estimate of TV from healthy human participants. Specifically, we fused both ECG-derived and SCG-derived respiratory signals (EDR and SDR) and trained a machine learning model with gas rebreathing as the ground truth to estimate TV. The respiration cycle modulates ECG and SCG signals in multiple different ways that are synergistic. Thus, here we extract EDRs and SDRs using a multitude of different demodulation techniques. The extracted features are used to train a subject independent machine learning model to accurately estimate TV. By fusing the extracted EDRs and SDRs, we were able to estimate the TV with a root-mean-square error (RMSE) of 181.45 mL and Pearson correlation coefficient (r) of 0.61, with a global subject-independent model. We further show that SDRs are better TV estimators than EDRs. Among SDRs, amplitude modulated (AM) SCG features are the most correlated to TV. We demonstrated that fusing EDRs and SDRs can result in moderately accurate estimation of TV using a subject-independent model. Additionally, we highlight the most informative features for estimating TV. This work presents a significant step towards achieving continuous, calibration free, and unobtrusive TV estimation, which could advance the state of the art in wearable respiratory monitoring.

2.
IEEE J Biomed Health Inform ; 26(6): 2481-2492, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1878964

RESUMEN

OBJECTIVE: At-home monitoring of respiration is of critical urgency especially in the era of the global pandemic due to COVID-19. Electrocardiogram (ECG) and seismocardiogram (SCG) signals-measured in less cumbersome contact form factors than the conventional sealed mask that measures respiratory air flow-are promising solutions for respiratory monitoring. In particular, respiratory rates (RR) can be estimated from ECG-derived respiratory (EDR) and SCG-derived respiratory (SDR) signals. Yet, non-respiratory artifacts might still be present in these surrogates of respiratory signals, hindering the accuracy of the RRs estimated. METHODS: In this paper, we propose a novel U-Net-based cascaded framework to address this problem. The EDR and SDR signals were transformed to the spectro-temporal domain and subsequently denoised by a 2D U-Net to reduce the non-respiratory artifacts. MAJOR RESULTS: We have shown that the U-Net that fused an EDR input and an SDR input achieved a low mean absolute error of 0.82 breaths per minute (bpm) and a coefficient of determination (R2) of 0.89 using data collected from our chest-worn wearable patch. We also qualitatively provided insights on the complementariness between EDR and SDR signals and demonstrated the generalizability of the proposed framework. CONCLUSION: ECG and SCG collected from a chest-worn wearable patch can complement each other and yield reliable RR estimation using the proposed cascaded framework. SIGNIFICANCE: We anticipate that convenient and comfortable ECG and SCG measurement systems can be augmented with this framework to facilitate pervasive and accurate RR measurement.


Asunto(s)
COVID-19 , Frecuencia Respiratoria , Artefactos , Electrocardiografía , Humanos , Respiración , Procesamiento de Señales Asistido por Computador
3.
Biosensors (Basel) ; 11(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1581025

RESUMEN

In light of the recent Coronavirus disease (COVID-19) pandemic, peripheral oxygen saturation (SpO2) has shown to be amongst the vital signs most indicative of deterioration in persons with COVID-19. To allow for the continuous monitoring of SpO2, we attempted to demonstrate accurate SpO2 estimation using our custom chest-based wearable patch biosensor, capable of measuring electrocardiogram (ECG) and photoplethysmogram (PPG) signals with high fidelity. Through a breath-hold protocol, we collected physiological data with a wide dynamic range of SpO2 from 20 subjects. The ratio of ratios (R) used in pulse oximetry to estimate SpO2 was robustly extracted from the red and infrared PPG signals during the breath-hold segments using novel feature extraction and PPGgreen-based outlier rejection algorithms. Through subject independent training, we achieved a low root-mean-square error (RMSE) of 2.64 ± 1.14% and a Pearson correlation coefficient (PCC) of 0.89. With subject-specific calibration, we further reduced the RMSE to 2.27 ± 0.76% and increased the PCC to 0.91. In addition, we showed that calibration is more efficiently accomplished by standardizing and focusing on the duration of breath-hold rather than the resulting range in SpO2. The accurate SpO2 estimation provided by our custom biosensor and the algorithms provide research opportunities for a wide range of disease and wellness monitoring applications.


Asunto(s)
COVID-19 , Monitoreo Fisiológico/instrumentación , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles , COVID-19/diagnóstico , Electrocardiografía , Humanos , Oximetría , Oxígeno , Saturación de Oxígeno , Fotopletismografía , Esternón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA